Boundary condition and reflection anomaly in 2+1 dimensions

開催日時

2024/02/13(火)11:00~12:00

開催場所

ハイブリッド:研究本館 セミナールーム、オンライン(Zoom)

講演者

松戸竜太郎氏 (国立台湾大学)

言語

English

詳細ページ

お問い合わせ

濱田雄太/yhamada-AT-post.kek.jp


概要

t is known that the 2+1d single Majorana fermion theory has an anomaly of the reflection, which is canceled out when 16 copies of the theory are combined. Therefore, it is expected that the reflection symmetric boundary condition is impossible for one Majorana fermion, but possible for 16 Majorana fermions. In this study, we consider a reflection symmetric boundary condition that varies at a single point, and find that there is a problem with one Majorana fermion. The problem is the absence of a corresponding outgoing wave to a specific incoming wave into the boundary, which leads to the non-conservation of the energy. For 16 Majorana fermions, it is possible to connect every incoming wave to an outgoing wave without breaking the reflection symmetry. In addition, we discuss the connection with the fermion-monopole scattering in 3+1 dimensions. This talk is based on arXiv:2306.10845.